Synthesis of D-Hexos-5-uloses by Novel in Situ Hydrolysis of Epoxides Derived from 6-Deoxyhex-5-enopyranosides

Philomena M. Enright,† Kathy M. O'Boyle,‡ and Paul V. Murphy*,†

*Departments of Chemistry and Pharmacology, Conway Institute of Biomolecular and Biomedical Research, Uni*V*ersity College Dublin, Belfield, Dublin 4, Ireland*

*paul.*V*.murphy@ucd.ie*

Received October 10, 2000

ABSTRACT

Epoxides derived from 2,3,4-tri-*O***-protected-6-deoxyhex-5-enopyranosides are hydrolyzed in situ to ultimately give novel protected-D-hexos-5-ulose derivatives (sugar 1,5-dicarbonyls, 5-ketohexoses) in moderate to high yields. The products adopt a bicyclic structure (1,6-anhydropyranos-5-ulose) in solution with the pyranose ring in ⁴** *C***¹ conformation. The methodology has been used to prepare D-***xylo***-hexos-5-ulose (5-ketoglucose), a synthetic precursor to 1-deoxynojirimycin and a possible intermediate in the biosynthesis of inositols.**

Our interest in the synthesis of novel glycosaminoglycan derivatives¹ and other carbohydrates for biological evaluation prompted us to study the synthetic potential of epoxides **1**. We envisaged that reactions of these compounds with reducing reagents or nucleophiles could proceed in a diastereoselective and/or regioselective manner to give idopyranosides and their analogues (Scheme 1). These intermediates could be further elaborated into iduronic acid glycosyl donors, novel aminoglycosides with potential as RNA binding agents,² or other glycomimetics.³ Recent interest has focused on the synthetic potential of carbohydrate epoxides that are intermediates used in the preparation of oligosaccharides and other carbohydrate derivatives.⁴ 6-Deoxyhex-5-enopyranosides have proven to be useful intermediates in

† Department of Chemistry.

(1) Lander, A. D. *Chem. Biol.* **1994**, *1*, 73.

(3) Wong, C.-H. *Acc. Chem. Res.* **1999**, *32*, 376.

synthesis. They can be used, for example, to prepare carbacycles by the Ferrier and other rearrangement reactions.⁵ However, little work has been reported on the synthesis and reactions of their epoxides.⁶ We now describe our preliminary results, which show that these epoxides are readily hydrolyzed to give novel D-hexos-5-ulose (5-ketohexose) derivatives.

Synthetic routes to the glycals **3** and **4** are well established, 7 and the sequence used for their preparation was adapted from these methods (Scheme 2). The preparation

[‡] Department of Pharmacology.

⁽²⁾ Alper, P. B.; Hendrix, M.; Sears, P.; Wong, C.-H. *J. Am. Chem. Soc.* **1998**, *120*, 1965.

^{(4) (}a) Seeberger, P. H.; Bilodeau, M. T.; Danishefsky, S. J. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 1380. (b) Nicotra, F.; Panza, L.; Russo, G. *Tetrahedron Lett.* **1991**, 4035. (c) Alcaraz, M.-L.; Griffin, F. K.; Paterson, D. E.; Taylor R. J. K. *Tetrahedron Lett.* **1998**, *39*, 8183.

a Reagents and conditions: (a) PPh₃, Im, I₂, toluene, 80 °C, 3 h; (b) TMSCl, Py, 25 °C; (c) DBU, DMF, 70 °C, 3 h; (d) Ac₂O, Py; (e) NaOMe, MeOH, 25 °C, 12 h; (f) NaH, BnBr, DMF, 0 °C, 15 h.

of **3** can be carried out without purification of the intermediates. Thus, methyl 6-iodo-6-deoxy- α -D-glucopyranoside was prepared as described previously from methyl α -D-glucopyranoside⁸ and then treated with excess TMSCl in pyridine to give **2**. This protected iodide was converted to glycal **3** by the elimination of hydrogen iodide⁹ and exchange of the TMS groups for acetates. Deacetylation and benzylation gave **4**. 10

D-Hexos-5-ulose derivatives **5** and **6**¹¹ were respectively obtained when **3** and **4** were subjected to a variety of epoxidation conditions (Table 1).

		Table 1. Epoxidation-Hydrolysis of 3 and 4	
RO	RC RO OMe $3 R = Ac$ $4R = Bn$	RO RO ŔO RO RO OMe	но ΟR $5R = Ac$ $6R = Bn$
entry	R	reagents and conditions ^a	% yield
1	Bn	a	35
2	Bn	b	30
3	Bn	$\mathbf c$	26
4	Bn	d	$75 - 95$
5	Bn	e	43
6	Bn	f	26
7	Ac	a	≤ 10
8	Ac	b	27
9	Ac	d	$12 - 50^{b}$

a (a) CH₃ReO₃ (0.5 mol %), pyridine (12 mol %), 30% H₂O₂ (1.5 equiv), CH_2Cl_2/H_2O ; (b) MCPBA, NaHCO₃, CH_2Cl_2 15 h; (c) MCPBA, ClCH₂CH₂Cl, 4.5 h; (d) 1,1,1-trifluoroacetone, Oxone, NaHCO₃, Na₂EDTA, CH₃CN, H₂O; (e) acetone, KOH, Na₂EDTA, Oxone, NaHCO₃, CH₃CN, H₂O; (f) acetone, KOH, Oxone, Bu₄NHSO₄, phosphate buffer, benzene. ^b The yields are depleted by prolonged chromatography using silica gel.

The best reaction occurred when the benzylated glycal **4** was treated with methyl(trifluoromethyl)dioxirane, generated in situ,¹² giving 6 consistently in yields greater than 75% ; this reaction can easily be carried out on a multigram scale.¹³ The yields of ketohexose **6** were reduced when other conditions were employed. The formation of the products obtained can be explained by a mechanism that involves hydrolysis of the initially formed epoxide **2**, giving the hemiacetal **7** that subsequently loses methanol (Scheme 3).

The high susceptibility of the epoxides to undergo reaction with water can be compared with epoxides derived from 4-deoxy-L-*threo*-hex-4-enopyranoside which have been shown to react in situ with methanol to give bis-glycosides that also can been used to prepare 5-ketohexoses.14 Chapleur and coworkers have recently published a synthesis of a hemiacetal closely related to **7** by dihydroxylation of 2,3-di-*O*-benzyl-4-*O*-methanesulfonyl-6-deoxyhex-5-enopyranoside using RuCl3/NaIO4; they show that removal of the aglycon occurs

(9) The yield of **3** was significantly reduced if unprotected iodide was used in the elimination reaction.

(10) Glycal 3 was isolated yield in 61% yield from methyl α -Dglucopyranoside; **4** was isolated in 81% yield from **3**.

 (11) The products give satisfactory ¹H NMR, ¹³C NMR, IR, and highresolution mass spectrometry data.

(12) Yang, D.; Wong, M.-K.; Yip, Y.-C. *J. Org. Chem.* **1995**, *60*, 3887. (13) **Experimental procedure for preparation of 6:** Acetonitrile (70 mL), 1,1,1-trifluoroacetone (10 mL, 0.1 mol), and Na₂EDTA (50 mL of 4.0×10^{-4} M aqueous solution) were added to a cooled solution (0 °C) of **4** (4.5 g, 0.01 mol). A mixture of Oxone (30 g, 0.05 mol) and NaHCO3 (6.51 g, 0.07 mol) was added in 3.04 g portions every 5 min. The reaction was then allowed to stir overnight and was poured into ice-cold water. The product was extracted with dichloromethane $(3\times)$. The combined extracts were dried (MgSO4), filtered, and concentrated. The residue was eluted from silica gel using an ethyl acetate-petroleum ether (bp $40-60$ °C) gradient (1:4 to 1:1) to give **6** (4.36 g, 95%).

^{(5) (}a) Ferrier, R. J.; Middleton, S. *Chem. Re*V*.* **¹⁹⁹³**, *⁹³*, 2779. (b) Dalko, P.; Sinay, P. *Angew. Chem., Int. Ed.* **1999**, *38*, 773.

⁽⁶⁾ To the best of our knowledge, only one example of synthesis of an epoxide from 6-deoxyhex-5-enopyranosides has been reported: Defaye, J. *C. R. Hebd. Seances Acad. Sci.* **1962**, *255*, 794.

⁽⁷⁾ Semeria, D.; Phillipe, M.; Delaumeny, J.-M.; Sepulchre, A.-M.; Gero, S. D. *Synthesis* **1983**, 710.

⁽⁸⁾ Garegg, P. J.; Samuelsson, B. *J. Chem. Soc., Perkin Trans. 1* **1980**, 2866.

during silica gel chromatography and describe a 1,6 anhydroidopyranos-5-ulose structure for the product that they ultimately obtain.15 This bicyclic structure (**5**, **6**), which has the pyranose ring in 4C_1 conformation and disguises the aldehyde and ketone, is also proposed for the products obtained here. It is one of a number of tautomers that are possible (Scheme 3), yet it appears to be favored exclusively by the 2,3,4-tri-*O*-protected-5-ketoglucoses. There are no spectroscopic data (NMR or IR) to support the presence of an open chain, **8**, or septanos-5-ulose structure, **9**, in an equilibrium product mixture.¹⁶ The 1,6-anhydro-D-glucopyranos-5-ulose tautomer **10a** with its pyranose ring in ${}^{1}C_4$ conformation can be excluded on the basis of the coupling constants that are observed for the ring protons in the ¹H NMR spectra of the products. However, these data alone are not sufficient to confirm the idose configuration, assigned to the product (**5**, **6**); the pyran ring of the glucose tautomer could adopt a twist boat conformation, **10b**, which would also account for the coupling constants observed.17 Thus, 2D-NOESY experiments were carried out to establish the product configuration. Cross-peaks, possible only for structures **5** and **6**, were observed between H-3 and one of the H-6 protons; they were not observed for H-2 and H-6 or for H-4 and H-6 as would have been expected for **10b**. Chemical reactions of **6** (Table 2) were also studied and rule

	Table 2. Reactions of 6		
	HO −BnO BnO 6	$a R = Me$ RO $bR = Ms$ $_{\text{BnO}}^{\text{BO}}$ $c R = Tf$ OBn OBn $dR = TBS$ $e R = Ac$ 13а-е	
entry	R	reagents and conditions ^a	% yield
1	Me	a	78^b
2	Ms	b	63
3	Tf	$\mathbf c$	66^b
4	TBS	d	48

^a (a) NaH (2 equiv), MeI (2 equiv), DMF, 25 °C, 12 h; (b) MsCl (2 equiv), DMAP, Py, 2.5 h; (c) Tf₂O (2 equiv), 2,6-lutidine (4 equiv), CH₂Cl₂, -40 to 25 °C, 15 h; (d) TBSOTf (1.5 equiv), 2,6-lutidine (2 equiv), CH₂Cl₂; (e) Ac2O, Py, DMAP (cat.), 25 °C, 15 h. *^b* Yield based on recovered starting material.

out the possibility that a hydrated form of the hexos-5-ulose **11** had been isolated.18 Reaction of **6**, for example, in the

(17) Monte Carlo conformational searches (SUMM method, amber Force Field) using Macromodel 6.0 were performed on tautomer 10 ($R = Bn$ and $R = H$). For the benzylated compound, there were 70 structures found within 3.0 kcal mol⁻¹ of the global minimum. All except one had ${}^{1}C_{4}$ conformations for the pyranose ring. For the unprotected derivative, 15 of 24 low-energy structures within 3 kcal mol⁻¹ of the global minimum had a twist-boat conformation. Thus, we wanted to rule out any possibility that the product isolated adopts a twist boat, **10b**, even though these calculations indicated a ¹*C*⁴ conformation should be favored for the pyranose ring of the protected compound.

presence of excess acetic anhydride and pyridine gave the monoacetate **13e**. The triacetate **12** would have been expected as a product had the reactant been **11**. These experiments confirm the idopyranose configuration assigned to the products.19

The *tert*-butyldimethylsilyl (TBS) derivative **13d** was converted to D-*xylo*-hexos-5-ulose²⁰ 15 after removal of benzyl groups by catalytic hydrogenation and subsequent treatment of the product with tetrabutylammonium fluoride in THF (Scheme 4).²¹ D-*xylo*-Hexos-5-ulose has been used

previously in synthesis of the glycosidase inhibitor 1-deoxynojirimycin **16**²² and has also been postulated as an intermediate in the biosynthesis of inositols.23 Protection of the free hydroxyl of **6** with the TBS group was necessary as attempts to obtain **15** directly from **5** or **6** were not successful.²⁴

In summary, we have described a new route to 5-ketoglucose and some of its novel protected derivatives.25 The methodology could, in principle, have potential for a general synthesis of 5-ketohexoses or other 1,5-dicarbonyl derivatives. Reaction, for example, of the mannose derivative **17** gives 2,3,4-tri-*O*-benzyl-1,6-anhydro-L-gulopyranos-5-ulose **18** (Scheme 5). Work is currently underway to explore the biological properties and synthetic potential of novel hexos-

⁽¹⁴⁾ Barili, P. L.; Berti, G.; Catelini, G.; D'Andrea, F.; De Rensis, F. *Tetrahedron* **1997**, 8665.

⁽¹⁵⁾ Taillefumier, C.; Lakhrissi, M.; Chapleur, Y. *Synlett* **1999**, 697.

⁽¹⁶⁾ 1H NMR spectra were recorded for **5** and **6** in CDCl3, and IR spectra were obtained for liquid film for 5 and by KBr disk and CHCl₃ methods for **6**.

⁽¹⁸⁾ Detailed studies on equilibrium product mixtures in aqueous solution of unprotected hexos-5-uloses have been carried out. See: (a) Kiely, D. E.; Harry-O'Kuru, R. E.; Morris, P. E., Jr.; Morton, D. W.; Riordan, J. M. *J. Carbohydr. Chem.* **1997**, *16*, 1159. (b) Riordan, J. M.; Morris, P. E., Jr.; Kiely, D. E. *J. Carbohydr. Chem.* **1993**, *12*, 865.

⁽¹⁹⁾ Compounds **13a**-**^e** have the idose configuration as confirmed by NMR.

⁽²⁰⁾ The compound has NMR data in good agreement with that already reported; see refs 18b and 22.

⁽²¹⁾ The use of more than 1 equiv of TBAF leads to formation of unidentified products.

⁽²²⁾ Baxter, E.; Reitz, A. B. *J. Org. Chem.* **1994**, *59*, 3175.

^{(23) (}a) Wong, Y.-H. H.; Sherman, W. R. *J. Biol. Chem.* **1981**, *256*, 7077. (b) Eisenberg, F., Jr.; Maeda, T. In *Inositols and Phosphoinositides*; Bleasdale, J. E., Eichberg, J., Hauser, G., Eds.; Humana: New Jersey, 1985; p 3.

⁽²⁴⁾ Compound **5** when treated with sodium methoxide in methanol gave an intractable product mixture. Catalytic hydrogenation of **⁶** using Pd-C, H2 in ethanol gave a complex mixture, which did not contain **15**.

⁽²⁵⁾ For previous syntheses of **15** and some of its other protected derivatives, see refs 14 and 22 and (a) Heusinger, H. *Carbohydr. Res*. **1988** *181,* ⁶⁷-76. (b) Kiely, D. E.; Fletcher, H. G., Jr. *J. Org. Chem.* **¹⁹⁶⁹**, *³⁴*, 1386. (c) Helferich, B.; Bigelow, N. M. *Z. Physiol. Chem.* **1931**, 200. (d) Blattner, R.; Ferrier, R. J. *J. Chem. Soc., Perkin Trans. 1* **1980**, 1523. (e) Ferrier, R. J.; Tyler, P. C. *J. Chem. Soc., Perkin Trans. 1* **1980**, 1528.

5-uloses that adopt the bicyclic structure. Isolation of the epoxides and continuing investigation of their synthetic potential is in progress.26

Acknowledgment. The authors thank Professor Richard J. K. Taylor and NMR Centre UCD, Enterprise Ireland (Sc/ 97/547), Health Research Board (Irl.)/Wellcome Trust, Limerick Co. Council (scholarship to P.M.E.), and UCD for support.

Supporting Information Available: Details of the preparation of 3 and 4. NMR, IR, $[\alpha]_D$, and HRMS data for 5, 6, **13a–e**, and **18**. ¹H NMR and ¹³C NMR spectra for **15** and **18**. This material is 2D-NOESY spectra for **5**, **6**, and **18**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006714W

⁽²⁶⁾ There is evidence (NMR and MS) to support epoxide formation in the reactions. They have not as yet been purified sufficiently for publication purposes.